A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture.

نویسندگان

  • M I Newby
  • N L Greenbaum
چکیده

The removal of noncoding sequences (introns) from eukaryotic precursor mRNA is catalyzed by the spliceosome, a dynamic assembly involving specific and sequential RNA-RNA and RNA-protein interactions. An essential RNA-RNA pairing between the U2 small nuclear (sn)RNA and a complementary consensus sequence of the intron, called the branch site, results in positioning of the 2'OH of an unpaired intron adenosine residue to initiate nucleophilic attack in the first step of splicing. To understand the structural features that facilitate recognition and chemical activity of the branch site, duplexes representing the paired U2 snRNA and intron sequences from Saccharomyces cerevisiae were examined by solution NMR spectroscopy. Oligomers were synthesized with pseudouridine (psi) at a conserved site on the U2 snRNA strand (opposite an A-A dinucleotide on the intron strand, one of which forms the branch site) and with uridine, the unmodified analog. Data from NMR spectra of nonexchangeable protons demonstrated A-form helical backbone geometry and continuous base stacking throughout the unmodified molecule. Incorporation of psi at the conserved position, however, was accompanied by marked deviation from helical parameters and an extrahelical orientation for the unpaired adenosine. Incorporation of psi also stabilized the branch-site interaction, contributing -0.7 kcal/mol to duplex deltaG degrees 37. These findings suggest that the presence of this conserved U2 snRNA pseudouridine induces a change in the structure and stability of the branch-site sequence, and imply that the extrahelical orientation of the branch-site adenosine may facilitate recognition of this base during splicing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of the spliceosomal branch site RNA helix on the basis of surface and electrostatic features

We have investigated electrostatic and surface features of an essential region of the catalytic core of the spliceosome, the eukaryotic precursor messenger (pre-m)RNA splicing apparatus. The nucleophile for the first of two splicing reactions is the 2'-hydroxyl (OH) of the ribose of a specific adenosine within the intron. During assembly of the spliceosome's catalytic core, this adenosine is po...

متن کامل

Sequences upstream of the branch site are required to form helix II between U2 and U6 snRNA in a trans-splicing reaction.

Three different base paired stems form between U2 and U6 snRNA over the course of the mRNA splicing reaction (helices I, II and III). One possible function of U2/U6 helix II is to facilitate subsequent U2/U6 helix I and III interactions, which participate directly in catalysis. Using an in vitro trans-splicing assay, we investigated the function of sequences located just upstream from the branc...

متن کامل

UACUAAC is the preferred branch site for mammalian mRNA splicing.

The conserved branch-site sequence UAC-UAAC is known to form base pairs with the complementary sequence GUAGUA in U2 small nuclear RNA (snRNA) during mRNA splicing in the yeast Saccharomyces cerevisiae. Although the GUAGUA element is conserved in mammalian U2 snRNA, mammalian branch sites conform only weakly to a YURAC consensus and can even be deleted without obvious effects on the efficiency ...

متن کامل

trans-splicing to spliceosomal U2 snRNA suggests disruption of branch site-U2 pairing during pre-mRNA splicing.

Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved ...

متن کامل

Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA.

Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2001